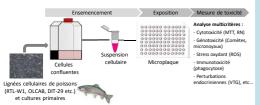
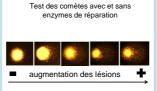


AXE 3 : Analyse structurale et fonctionnelle de l'impact des polluants

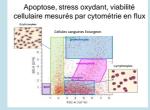
EQUIPE EΑ Site de Talence J. Cachot, B. Morin, B. Davail, C. Clérandeau, M. Baudrimont, P. Gonzalez, A. Legeay, F. Pierron, N. Delage, P. Gamain, B. Lévesque, K. Boukadida, P. Pannetier


OBJECTIFS SCIENTIFIQUES

A partir de cultures cellulaires, d'embryons et larves de poissons et mollusques


- → Développer des tests alternatifs à l'expérimentation animale
- → Développer des tests fonctionnels : comportement, anomalies du développement, métabolisme, immunité, réparation de l'ADN, etc.
- → Etudier le mode d'action et caractériser le spectre d'effets toxiques des polluants

1 TESTS IN VITRO SUR CELLULES


Tests de toxicité in vitro sur lignées cellulaires et cultures primaires de poissons

Génotoxicité

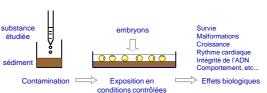
Cvtotoxicité

Activités enzymatiques

- → Etude des mécanismes d'action et évaluation de la toxicité de polluants en émergence : nanomatériaux, médicaments, produits de soins corporels...
- → Criblage haut débit pour l'étude de la toxicité de substances ou d'échantillons environnementaux
- → Identification de molécules toxiques dans des mélanges complexes par une approche TIE (Toxicity Identification Evaluation)

2 EN CONDITIONS CONTRÔLÉES DE LABORATOIRE : TESTS FONCTIONNELS SUR EMBRYONS ET LARVES

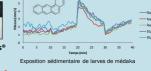
Modèles biologiques : mollusques et poissons aux premiers stades de développement



Espèces modèles (médaka japonais, huître)

Espèces du milieu (esturgeon, truite, turbot, crevette blanche, moule...)

Tests de toxicité sur embryons



Anomalies du développement

Troubles du comportement

Immunotoxicité

Génotoxicité et cancérogénicité

- → Etude de la biodisponibilité, du transfert, du mode d'action et des effets des polluants à faible dose et en mélange sur des modèles de vertébrés et invertébrés aquatiques
- → Etude des effets combinés de stress multiples : polluants + température + hypoxie + salinité
- → Evaluation de l'écotoxicité de matrices environnementales : sédiments, effluents, échantillons


3 SUR DES SITES ATELIERS : DIFFÉRENTS STADES DE VIE D'ESPÈCES D'INTÉRÊT COMMERCIAL OU PATRIMONIAL

Quatre sites ateliers: Seine, Gironde, bassin d'Arachon et lagune de Bizerte

Sur l'huître creuse Crassostrea gigas

→ Réponses adaptatives et impact de la pollution sur le cycle de vie

Cadre programmatique : Sturtop, Cittoxic-Nano, Echibioteb, PhytoCote, ... Principaux partenaires : IRSTEA, IFREMER, INRA, ONIRIS, Universités de Bizerte et de Sousse Soutien financier: ANR, Région Aquitaine, Agence de l'Eau, SIBA, programme Piren-Seine

BASSIN D'ARCACHON